64 research outputs found

    Conditional Restricted Boltzmann Machines for Structured Output Prediction

    Full text link
    Conditional Restricted Boltzmann Machines (CRBMs) are rich probabilistic models that have recently been applied to a wide range of problems, including collaborative filtering, classification, and modeling motion capture data. While much progress has been made in training non-conditional RBMs, these algorithms are not applicable to conditional models and there has been almost no work on training and generating predictions from conditional RBMs for structured output problems. We first argue that standard Contrastive Divergence-based learning may not be suitable for training CRBMs. We then identify two distinct types of structured output prediction problems and propose an improved learning algorithm for each. The first problem type is one where the output space has arbitrary structure but the set of likely output configurations is relatively small, such as in multi-label classification. The second problem is one where the output space is arbitrarily structured but where the output space variability is much greater, such as in image denoising or pixel labeling. We show that the new learning algorithms can work much better than Contrastive Divergence on both types of problems

    DeepLine: AutoML Tool for Pipelines Generation using Deep Reinforcement Learning and Hierarchical Actions Filtering

    Full text link
    Automatic machine learning (AutoML) is an area of research aimed at automating machine learning (ML) activities that currently require human experts. One of the most challenging tasks in this field is the automatic generation of end-to-end ML pipelines: combining multiple types of ML algorithms into a single architecture used for end-to-end analysis of previously-unseen data. This task has two challenging aspects: the first is the need to explore a large search space of algorithms and pipeline architectures. The second challenge is the computational cost of training and evaluating multiple pipelines. In this study we present DeepLine, a reinforcement learning based approach for automatic pipeline generation. Our proposed approach utilizes an efficient representation of the search space and leverages past knowledge gained from previously-analyzed datasets to make the problem more tractable. Additionally, we propose a novel hierarchical-actions algorithm that serves as a plugin, mediating the environment-agent interaction in deep reinforcement learning problems. The plugin significantly speeds up the training process of our model. Evaluation on 56 datasets shows that DeepLine outperforms state-of-the-art approaches both in accuracy and in computational cost

    Recurrent Models of Visual Attention

    Full text link
    Applying convolutional neural networks to large images is computationally expensive because the amount of computation scales linearly with the number of image pixels. We present a novel recurrent neural network model that is capable of extracting information from an image or video by adaptively selecting a sequence of regions or locations and only processing the selected regions at high resolution. Like convolutional neural networks, the proposed model has a degree of translation invariance built-in, but the amount of computation it performs can be controlled independently of the input image size. While the model is non-differentiable, it can be trained using reinforcement learning methods to learn task-specific policies. We evaluate our model on several image classification tasks, where it significantly outperforms a convolutional neural network baseline on cluttered images, and on a dynamic visual control problem, where it learns to track a simple object without an explicit training signal for doing so

    Empirical Bernstein stopping

    Get PDF
    Sampling is a popular way of scaling up machine learning algorithms to large datasets. The question often is how many samples are needed. Adaptive stopping algorithms monitor the performance in an online fashion and they can stop early, saving valuable resources. We consider problems where probabilistic guarantees are desired and demonstrate how recently-introduced empirical Bernstein bounds can be used to design stopping rules that are efficient. We provide upper bounds on the sample complexity of the new rules, as well as empirical results on model selection and boosting in the filtering setting

    Playing Atari with Deep Reinforcement Learning

    Full text link
    We present the first deep learning model to successfully learn control policies directly from high-dimensional sensory input using reinforcement learning. The model is a convolutional neural network, trained with a variant of Q-learning, whose input is raw pixels and whose output is a value function estimating future rewards. We apply our method to seven Atari 2600 games from the Arcade Learning Environment, with no adjustment of the architecture or learning algorithm. We find that it outperforms all previous approaches on six of the games and surpasses a human expert on three of them.Comment: NIPS Deep Learning Workshop 201
    • …
    corecore